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A method is proposed for the recurrent construction of the periodic solution of a substantially non- 

linear conservative system with a single degree of freedom which is close to a vibration impact system. 

It is assumed that the restoring force is a power function of the deflection. A quantity which is the 

inverse of this exponent is regarded as a small parameter. The method is based on the asymptotic 

representation (in a certain weak sense) of this non-linearity in powers of a small parameter) using 

normalization and Laplace transformation procedures. This approach leads to differential equations 

containing generalized &functions of the unknown variable and derivatives of these functions of as 

high an order as desired. 

THE CONSTRUCTION of a sequential asymptotic procedure, based on a power expansion in n-‘, where n is the 
degree of non-linearity, to some extent solves the problem of justifying the H-method [l-3]. Here, results 
based on the H-method are obtained as the zeroth approximation just like, for example, results based on 

the Van der Pol method serve as the zeroth approximation in the Krylov-Bogolyubov-Mitropol’skii 

averaging procedure. 
As an example, we will consider the equation 

x..+x”=O, n=2k+l, k=1,2 )... 

for which we will seek a single parameter family of periodic solutions which are skew-symmetric with 
respect to the origin of coordinates in the limit as n + 00. 

Let us introduce the function E, = x/A (A is the amplitude) for which the inequality 0 4 5 16 1 holds. 

Note that the function 5 is continuous and periodic. 
The initial equation can then be represented as follows: 

5” +,@{n =I) (1) 

We will expand the function 5” in series in l/n as n -_) -. In order to do this, we first transform the 

function 

using a Laplace transformation cp(Q + p-“-l+@ + 1, p). 
On expanding the incomplete gamma function y(n+l, p) in series in l/n and, on carrying out the 
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inverse transformation in a term-by-term manner (this procedure is justified in [4, 51, for example), we 

obtain 

~=g(&-l)(n+l)-t-6(~-l)(n+l)-‘(n+2)-1+... 
(2) 

where g( ) is the delta function. 
We will now make the change of variable t= r/w in Eq. (1). 
On retaining just the principal term in the second sum and putting 

co2 =A"-' /(n+l) (3) 

(since 0 6151~ l), we have the equation 

&&I&= 4(ei)- 1) (4) 

for determining the periodic function 5,. 
We will now consider the mathematical meaning of Eq. (4). On its right-hand side, there is a general- 

ized function which is localized on the line 5, = 1. This is a common object in the theory of generalized 
functions [6], and therefore none of the difficulties which occur in problems with impact interactions [7] 

arise here. 
Integration of Eq. (4) taking account of the skew symmetry with respect to the origin of coordinates 

yields in the initial variables 

q,=Aw (5) 

Expression (3), which can be treated as an amplitude-frequency dependence, and the solutions over a 

quarter of a period agree with those obtained by the n-method [l-3]. 
We will now construct the subsequent approximations. 
In order to do this, we will first represent 5 in the form of a series 

(=t&+&,@ +2)-' + . . . (6) 

On substituting series (6) into expression (2) and expanding the latter with respect to (n + 2)-l, we have 

i&)+~&l+2)-1 +... -1]=6& -1)+51(n+2)-16’(50-1)+... 
(7) 

6’& +5,(n+2)-’ + . . . - l] = S’(l& - 1) + 5, (n +2)-l S”(5() - 1) + . . . 

Formulae (7) are obtained after a transition into the image space, expansion of the right-hand sides of 
the corresponding expressions in series with respect to (n+2)-’ and then carrying out the inverse trans- 
formations. In addition, we introduce the expansion of w in powers of (rt + 2)” 

o=[(A”-’ /(n+l))lH[l+o,(n+2)-’ +...I (8) 

After substituting relationships (6) and (8) into Eq. (l), making the change of variable 1=r/0 and 

splitting with respect to (n + 2)-l, we obtain 

d2k, /dz2 = -[I-&,,]s’(&, -1)+201,6&, -1) (9) 

The occurrence, on the right-hand side of (9), of a derivative of a g-function leads to the build up of a 
higher-order singularity in the solution. In order to remove this singularity, we put 
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Then 

d*k, ldT* =2ci$(k& -1) 

The solution for 5, can be represented in the form 5, = r, and we then find that w, = -l/2> from the 
boundary condition (10). The higher approximations are constructed in a similar manner although, of 

course, this is a fairly lengthy process. 
We note that the smoothness of the solution when r=l is violated during the sequential asymptotic 

integration. In order to remove this difficulty, it is possible to up the preservation of asymptoticity, by 

taking account of terms of a higher order of smallness. 
Equation (11) then takes the form 

The solution of Eq. (12) with boundary condition (10) is identical with the first approximation of the 
iteration procedure which has been previously suggested [l-3]. 

The formal asymptotic procedure is described above. Questions of convergence, estimates of accuracy, 
etc., have not been considered. 

The approach proposed is a natural asymptotic method for solving differential equations containing 

terms of the form of xl+=, when a +=. A method has been developed in [8] for constructing the 
asymptotic form of similar equations when a is small. The existence of solutions when a + 0 and when 

a + = allows one subsequently to use the apparatus of two-point Pad6 approximants [9] and to obtain a 

unique solution for any a. 
I wish to thank V. N. Pilipchuk for useful discussions and the referee for his remarks. 
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